Sains Malaysiana 54(4)(2025): 1037-1052
http://doi.org/10.17576/jsm-2025-5404-06
Polycyclic Aromatic Hydrocarbons in Volatile and
Particle Phases over the Vicinity of Petrochemical Refinery Areas
(Hidrokarbon Aromatik Polisiklik dalam Fasa Meruap dan
Fasa Zarah di Persekitaran Kawasan Penapisan Petrokimia)
SHARANYA RAMANATHAN1, SITI JARIANI MOHD
JANI1, ZAMZAM T.A. RAMLY2, MUHAMMAD NURUL HUDA3,
NOWSHIN JAHAN LAMIA4, NAZIFA NAWYAL4 & MD FIROZ KHAN4,*
1Department
of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur,
Malaysia
2Department
of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor, Malaysia
3Centre
for Advanced Research in Sciences (CARS) University of Dhaka, Dhaka 1000,
Bangladesh
4Department
of Environmental Science and Management, North South University, Bashundhara,
Dhaka 1229, Bangladesh
Received:
10 June 2024/Accepted: 17 December 2024
Abstract
The distribution of gaseous and particulate
polycyclic aromatic hydrocarbons (PAHs), sources, and human exposure were studied
around a petrochemical site located in Melaka, Malaysia from March 2021 - March
2022. Polyurethane (PUF) sampler devices were placed in six different areas
to collect gaseous phase PAHs, and a High Volume Air
Sampler (HVS) device was placed at a single location to collect PM2.5-bound PAHs. PUF samplers utilize porous foam to absorb PAHs passively with zero
external power for long-term exposure monitoring. Meanwhile, the HVS device
draws air at higher flow rates for more than a day. A total of sixteen PAHs
were analyzed in both particulate and gaseous phases. The average concentrations
for the gaseous phase (n=48) were 15.90±27.29,
10.41±16.74, 7.47±18.18, 8.19±15.70, 9.39±19.35, and 11.19±28.35 ng/m3 at Sri Vanathandavar Temple, Masjid Wadhi, Tadika Cahaya, Tadika Pasti,
Monforth Youth Centre, and Maha Mariamman Temple, respectively, whereas the average
concentration of particulate phase (n=35) was 0.24±0.23 ng/m3 at SK
Sungai Udang. In the gaseous phase, the seasonal variations at sampling sites
in Southwest Monsoon (June – September) observed the greatest level at
13.89±4.69 ng/m3 and the lowest during Intermonsoon 1 (October –
November) at 8.22±5.26 ng/m3. The diagnostic ratio showed that the primary
contributors of PAHs in both phases are traffic emissions, petroleum and coal burning.
The total Benzo(a)Pyrene equivalent carcinogenic (BaPeq) exposure
was 5.27 - 22.02 ng/m3 in the volatile phase and 1.18 ng/m3 in the particulate aerosol phase. For carcinogenic risk,
the incremental lifetime cancer risk (ILCR) in adults was higher compared to children
and adolescents in both gaseous and particulate phases. The Hazard Quotient (HQ)
for the adolescent in the gaseous phase (9.86E-03) was relatively higher compared
to the particulate aerosol phase (1.01E-03).
Keywords: Carcinogens; passive
air sampling; petroleum sites; sources
Abstrak
Pengagihan
hidrokarbon aromatik polisiklik (PAH) dalam gas dan sumber zarah serta
pendedahan manusia kepada PAH telah dikaji di sekitar tapak petrokimia yang
terletak di Melaka dari Mac 2021 hingga Mac 2022. Peranti pensampelan
poliuretana (PUF) diletakkan di enam lokasi untuk mengumpul PAH fasa gas,
manakala satu peranti pengambil sampel udara berkelantangan tinggi (HVS)
digunakan di satu lokasi untuk mengumpul PAH terikat PM2.5.
PUF menyerap PAH secara pasif tanpa kuasa luar untuk pemantauan jangka
panjang, sementara HVS menarik udara pada kadar aliran tinggi untuk beberapa
hari. Sebanyak enam belas PAH telah dianalisis daripada fasa zarah dan gas.
Kepekatan purata untuk fasa gas (n=48) ialah 15.90±27.29, 10.41±16.74,
7.47±18.18, 8.19±15.70, 9.39±19.35 dan 11.19±28.35 ng/m3 masing-masing
di Kuil Sri Vanathandavar, Masjid Wadhi, Tadika Cahaya, Tadika Pasti, Pusat
Belia Monforth dan Kuil Maha Mariamman, manakala purata kepekatan zarah di SK
Sungai Udang (n=35) ialah 0.24±0.23 ng/m3. Dalam fasa gas, variasi bermusim
di tapak pensampelan pada Monsun Barat Daya (Jun - September) memerhatikan
kepekatan purata terbesar pada 13.89±4.69 ng/m3 dan yang terendah semasa
antara monsun 1 (Oktober - November) pada 8.22±5.26 ng/m3. Nisbah
diagnostik mendedahkan bahawa penyumbang utama PAH dalam kedua-dua fasa ialah
pelepasan lalu lintas, petroleum dan pembakaran arang batu. Jumlah pendedahan
karsinogenik setara Benzo(a)Pirena (BaPeq) ialah 5.27 - 22.02 ng/m3 untuk fasa gas dan 1.18 ng/m3 untuk fasa zarah. Untuk risiko
karsinogenik, peningkatan risiko kanser seumur hidup (ILCR) pada orang dewasa
adalah lebih tinggi berbanding kanak-kanak dan remaja dalam kedua-dua fasa gas
dan zarah. Darjah bahaya (HQ) untuk kumpulan remaja dalam fasa gas (9.86E-03)
adalah lebih tinggi berbanding fasa zarah (1.01E-03).
Kata kunci: Karsinogen; persampelan udara pasif; sumber; tapak petroleum
REFERENCES
Abdel-Shafy, Hussein I. & Mona
SM Mansour. 2016. A review on polycyclic
aromatic hydrocarbons: source, environmental impact, effect on human health and
remediation. Egyptian Journal of Petroleum 25 (1): 107.
https://doi.org/10.1016/j.ejpe.2015.03.011
Adelin Anwar, Liew Juneng, Mohamed
Rozali Othman & Mohd Talib Latif. 2010. Correlation between hotspots and
air quality in Pekanbaru, Riau, Indonesia in 2006-2007. Sains Malaysiana 39(2): 169-174.
Adeyeye, E.I., Ibigbami, O.A., Adesina,
A.J., Popoola, O.K., Olatoye, A.R. & Gbolagade, Y.A. 2023. Assessment of polycyclic
aromatic hydrocarbons (PAHs) distribution in water, sediments and fish parts
from ponds in Ado-Ekiti, Nigeria. Polycyclic Aromatic Compounds 43(4):
3147-3158. https://doi.org/10.1080/10406638.2022.2064884
Akyüz, M. & Çabuk, H. 2010. Gas-particle
partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the
atmosphere of Zonguldak, Turkey. Science of the Total Environment 408(22): 5550-5558. https://doi.org/10.1016/j.scitotenv.2010.07.063
Amit
Kumar, Balram Ambade, Tapan Kumar Sankar, Shrikanta Shankar Sethi &
Sudarshan Kurwadkar. 2020. Source identification and health risk assessment of
atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in
Jamshedpur, India. Sustainable Cities and Society 52: 101801. https://doi.org/10.1016/j.scs.2019.101801
Anas Ahmad Jamhari, Mohd Talib
Latif, Muhammad Ikram A. Wahab, Murnira Othman, Haris Hafizal Abd Hamid,
Perapong Tekasakul, Mitsuhiko Hata, Masami Furuchi & Nor Fadilah Rajab. 2021.
Size-segregated atmospheric polycyclic aromatic hydrocarbons down to PM0.1 in urban tropical environment: Temporal distribution, potential sources and
human health risk. Urban Climate 40: 100996.
https://doi.org/10.1016/j.uclim.2021.100996
Anas Ahmad Jamhari, Mazrura Sahani,
Mohd Talib Latif, Kok Meng Chan, Hock Seng Tan, Md Firoz Khan & Norhayati
Mohd Tahir. 2014. Concentration and source identification of polycyclic
aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and
semi-urban areas in Malaysia. Atmospheric Environment 86: 16-27. https://doi.org/10.1016/j.atmosenv.2013.12.019
Aouizerats, B., Van Der Werf, G.R., Balasubramanian,
R. & Betha, R. 2015. Importance of transboundary transport of biomass
burning emissions to regional air quality in Southeast Asia during a high fire
event. Atmospheric Chemistry and Physics 15: 363-373.
https://doi.org/10.5194/acp-15-363-2015
Balasubramanian, R., Qian, W.B., Decesari,
S., Facchini, M.C. & Fuzzi, S. 2003. Comprehensive characterization of PM2.5 aerosols in Singapore. Journal of Geophysical Research: Atmospheres 108(D16):
4523. https://doi.org/10.1029/2002jd002517
Biswa
Mohan Sahoo, Bera Venkata Varaha Ravi Kumar, Bimal Krishna Banik &
Preetismita Borah. 2020. Polyaromatic hydrocarbons (PAHs): Structures,
synthesis and their biological profile. Current Organic Synthesis 17(8):
625-640. https://doi.org/10.2174/1570179417666200713182441
Brändli, R.C., Bucheli, T.D., Ammann,
S., Desaules, A., Keller, A., Blum, F. & Stahel, W.A. 2008. Critical evaluation
of PAH source apportionment tools using data from the Swiss soil monitoring
network. Journal of Environmental Monitoring 10(11): 1278-1286.
https://doi.org/10.1039/b807319h
Chen, Y., Ma, J., Duan, H. &
Miao, C. 2019. Occurrence, source apportionment, and potential human health
risks of metal (Loid)s and PAHs in dusts from driving school campuses in an
urban area of Henan, China. Environmental Science and Pollution Research 26(29): 30029-30043. https://doi.org/10.1007/s11356-019-06044-7
Cincinelli, A., Del Bubba, M., Martellini,
T., Gambaro, A. & Lepri, L. 2007. Gas-particle concentration and distribution
of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato
(Italy). Chemosphere 68(3): 472-478. https://doi.org/10.1016/j.chemosphere.2006.12.089
Elzein, A., Stewart, G.J., Swift, S.J., Nelson,
B.S., Crilley, L.R., Alam, M.S., Reyes-Villegas, E., Gadi, R., Harrison, R.M.,
Hamilton, J.F. & Lewis, A.C. 2020. A comparison of PM2.5-bound
polycyclic aromatic hydrocarbons in summer Beijing (China) and Delhi
(India). Atmospheric Chemistry and Physics 20(22): 14303-14319.
Field, R.D., Van Der Werf, G.R.
& Shen, S.S.P. 2009. Human amplification of drought-induced biomass burning
in Indonesia since 1960. Nature Geoscience 2(3): 185-188. https://doi.org/10.1038/ngeo443
Fujii, Y., Tohno, S., Amil, N., Latif,
M.T., Oda, M., Matsumoto, J. & Mizohata, A. 2015. Annual variations of
carbonaceous PM2.5 in Malaysia: Influence by Indonesian peatland fires. Atmospheric Chemistry and Physics 15(23): 13319-13329.
https://doi.org/10.5194/acp-15-13319-2015
Garban, B., Blanchoud, H., Motelay-Massei,
A., Chevreuil, M. & Ollivon, D. 2002. Atmospheric bulk deposition of PAHs
onto France: Trends from urban to remote sites. Atmospheric Environment 36(34): 5395-5403. https://doi.org/10.1016/S1352-2310(02)00414-4
Guo, Y., Wu, K., Huo, X. & Xu, X.
2011. Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. Journal
of Environmental Health 73(9): 22-25.
Hamidah
Suradi, Md Firoz Khan, Nor Asrina Sairi, Haasyimah Ab Rahim, Sumiani Yusoff,
Yusuke Fujii, Kai Qin, Md Aynul Bari, Murnira Othman & Mohd Talib Latif.
2021. Ambient levels, emission sources and health effect of PM2.5-bound
carbonaceous particles and polycyclic aromatic hydrocarbons in the city of
Kuala Lumpur, Malaysia. Atmosphere 12(5): 549. https://doi.org/10.3390/atmos12050549
He, J. & Balasubramanian, R.
2010. Semi-volatile organic compounds (SVOCs) in ambient air and rainwater in a
tropical environment: Concentrations and temporal and seasonal trends. Chemosphere 78(6):
742-751.
Jia, J., Deng, L., Bi, C., Jin, X., Zeng, Y. & Chen, Z. 2021.
Seasonal variations, gas-PM2.5 partitioning and long-distance input
of PM2.5-bound and gas-phase polycyclic aromatic hydrocarbons in
Shanghai, China. Atmospheric Environment 252: 118335.
Jia, T.,
Guo, W., Xing, Y., Lei, R., Wu, X., Sun, S., He, Y. & Liu, W. 2021. Spatial
distributions and sources of PAHs in soil in chemical industry parks in the
Yangtze River Delta, China. Environmental Pollution 283: 117121. https://doi.org/10.1016/j.envpol.2021.117121
Jiang, Y.,
Hu, X., Yves, U.J., Zhan, H. & Wu, Y. 2014. Status, source and health risk
assessment of polycyclic aromatic hydrocarbons in street dust of an industrial
city, NW China. Ecotoxicology and Environmental Safety 106: 11-18. https://doi.org/10.1016/j.ecoenv.2014.04.031
Kamal Hassan, S. & Khoder, M.I.
2012. Gas-particle concentration, distribution, and health risk assessment of
polycyclic aromatic hydrocarbons at a traffic area of Giza, Egypt. Environmental
Monitoring and Assessment 184(6): 3593-3612. https://doi.org/10.1007/s10661-011-2210-8
Kim,
J.Y., Lee, J.Y., Kim, Y.P., Lee, S.B., Jin, H.C. & Bae, G.N. 2012. Seasonal
characteristics of the gaseous and particulate PAHs at a roadside station in
Seoul, Korea. Atmospheric Research 116: 142-150. https://doi.org/10.1016/j.atmosres.2012.03.011
Kishida,
M., Nishikawa, A., Fujimori, K. & Shibutani, Y. 2011. Gas–particle
concentrations of atmospheric polycyclic aromatic hydrocarbons at an urban and
a residential site in Osaka, Japan: Effect of the formation of atmospherically
stable layer on their temporal change. Journal of Hazardous Materials 192(3): 1340-1349. https://doi.org/10.1016/j.jhazmat.2011.06.046
Kulkarni, K.S., Sahu, S.K., Vaikunta, R.L., Pandit, G.G.
& Lakshmana, D.N. 2014. Characterization and source identification of
atmospheric polycyclic aromatic hydrocarbons in Visakhapatnam, India. Int.
Res. J. Environ. Sci. 3(11): 57-64.
Lee, D.G.,
Lavoué, J., Spinelli, J.J. & Burstyn, I. 2015. Statistical modeling of
occupational exposure to polycyclic aromatic hydrocarbons using OSHA data. Journal
of Occupational and Environmental Hygiene 12(10): 729-742. https://doi.org/10.1080/15459624.2015.1043049
Liu, H.,
Li, B., Qi, H., Ma, L., Xu, J., Wang, M., Ma, W. & Tian, C. 2021. Source apportionment and toxic potency of polycyclic
aromatic hydrocarbons (PAHs) in the air of Harbin, a cold city in Northern
China. Atmosphere (Basel) 12(3): 297. https://doi.org/10.3390/atmos12030297
Mali, M., Ragone, R., Dell’Anna, M.M., Romanazzi,
G., Damiani, L. & Mastrorilli, P. 2022. Improved identification of
pollution source attribution by using PAH ratios combined with multivariate
statistics. Scientific Reports 12(1): 19298.
Manoli,
E., Kouras, A. & Samara, C. 2004. Profile analysis of ambient and source
emitted particle-bound polycyclic aromatic hydrocarbons from three sites in
Northern Greece. Chemosphere 56(9): 867-878. https://doi.org/10.1016/j.chemosphere.2004.03.013
Md Firoz
Khan, Mohd Talib Latif, Chee Hou Lim, Norhaniza Amil, Shoffian Amin Jaafar,
Doreena Dominick, Mohd Shahrul Mohd Nadzir, Mazrura Sahani & Norhayati Mohd
Tahir. 2015. Seasonal effect and source apportionment of polycyclic aromatic
hydrocarbons in PM2.5. Atmospheric Environment 106: 178-190. https://doi.org/10.1016/j.atmosenv.2015.01.077
Mohammad Sadegh Hassanvand, Kazem Naddafi, Sasan Faridi,
Ramin Nabizadeh, Mohammad Hossein Sowlat, Fatemeh Momeniha, Akbar Gholampour, Mohammad
Arhami, Homa Kashani, Ahad Zare, Sadegh Niazi, Noushin Rastkari, Shahrokh
Nazmara, Maryam Ghani & Masud Yunesian. 2015. Characterization of PAHs and metals in indoor/outdoor
PM10/PM2.5/PM1 in a retirement home and a
school dormitory. Science of The Total Environment 527:
100-110.
Nguyen,
T.N.T., Jung, K-S., Son, J.M., Kwon, H-O. & Choi, S-D. 2018. Seasonal
variation, phase distribution, and source identification of atmospheric
polycyclic aromatic hydrocarbons at a semi-rural site in Ulsan, South Korea. Environmental
Pollution 236: 529-539. https://doi.org/10.1016/j.envpol.2018.01.080
Nor
Azura Sulong, Mohd Talib Latif, Mazrura Sahani, Md Firoz Khan, Muhammad Fais
Fadzil, Norhayati Mohd Tahir, Noorlin Mohamad, Nobumitsu Sakai, Yusuke Fujii,
Murnira Othman & Susumu Tohno. 2019. Distribution, sources and potential
health risks of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected during different monsoon seasons and haze episode in Kuala Lumpur. Chemosphere 219: 1-14. https://doi.org/10.1016/j.chemosphere.2018.11.195
Nur Ain Nazirah Binti Najurudeen, Md Firoz Khan, Hamidah
Suradi, Ummay Ayesha Mim, Israt Nur Janntul Raim, Sara Binte Rashid, Mohd Talib
Latif & Muhammad Nurul Huda. 2023. The presence of polycyclic aromatic
hydrocarbons (PAHs) in air particles and estimation of the respiratory
deposition flux. Science of The Total Environment 878: 163129.
Oliveira,
M., Slezakova, K., Madureira, J., de Oliveira Fernandes, E., Delerue-Matos, C.,
Morais, S. & do Carmo Pereira, M. 2017. Polycyclic aromatic hydrocarbons in
primary school environments: Levels and potential risks. Science of The
Total Environment 575: 1156-1167. https://doi.org/10.1016/j.scitotenv.2016.09.195
Parshetti,
G.K., Telke, A.A., Kalyani, D.C. & Govindwar, S.P. 2010. Decolorization and
detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC
1532. Journal of Hazardous Materials 176(1-3): 503-509. https://doi.org/10.1016/j.jhazmat.2009.11.058
Pongpiachan,
S. & Paowa, T. 2015. Hospital out-and-in-patients as functions of trace
gaseous species and other meteorological parameters in Chiang-Mai, Thailand. Aerosol
and Air Quality Research 15(2): 479-493. https://doi.org/10.4209/aaqr.2013.09.0293
Pu, C.,
Xiong, J., Zhao, R., Fang, J., Liao, Y., Song, Q., Zhang, J., Zhang, Y., Liu,
H., Liu, W., Chen, W., Zhou, H. & Qi, S. 2022. Levels, sources, and risk
assessment of polycyclic aromatic hydrocarbons (PAHs) in soils of karst trough
zone, Central China. Journal of Hydrology 614: 128568. https://doi.org/10.1016/j.jhydrol.2022.128568
Ramírez,
N., Cuadras, A., Rovira, E., Marcé, R.M. & Borrull, F. 2011. Risk assessment
related to atmospheric polycyclic aromatic hydrocarbons in gas and particle
phases near industrial sites. Environmental Health Perspectives 119(8):
1110-1116. https://doi.org/10.1289/ehp.1002855
Ravindra,
K., Wauters, E. & Van Grieken, R. 2008. Variation in particulate PAHs levels
and their relation with the transboundary movement of the air masses. Science
of The Total Environment 396(2-3): 100-110. https://doi.org/10.1016/j.scitotenv.2008.02.018
Singh,
B.P., Zughaibi, T.A., Alharthy, S.A., Al-Asmari, A.I. & Rahman, S. 2023.
Statistical analysis, source apportionment, and toxicity of particulate-and
gaseous-phase PAHs in the urban atmosphere. Frontiers in Public Health 10:
1070663.
Sousa, G.,
Teixeira, J., Delerue-Matos, C., Sarmento, B., Morais, S., Wang, X., Rodrigues,
F. & Oliveira, M. 2022. Exposure to PAHs during firefighting activities: A review
on skin levels, in vitro/in vivo bioavailability, and health risks. International
Journal of Environmental Research and Public Health 19(19): 12677. https://doi.org/10.3390/ijerph191912677
Srimurali
Sampath, Govindaraj Shanmugam, Krishna Kumar Selvaraj & Babu Rajendran
Ramaswamy. 2015. Spatio-temporal distribution of polycyclic aromatic
hydrocarbons (PAHs) in atmospheric air of Tamil Nadu, India, and human health
risk assessment. Environmental Forensics 16(1): 76-87. https://doi.org/10.1080/15275922.2014.991002
Sun, K.,
Song, Y., He, F., Jing, M., Tang, J. & Liu, R. 2021. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health
risk and adverse effects, photo-induced toxicity and regulating effect of
microplastics. Science of The Total Environment 773: 145403. https://doi.org/10.1016/j.scitotenv.2021.145403
Udaya Kumar Vandana, Chakraborty, Manishankar, Debayan Nandi,
Lakkakula Satish & Mazumder. P.B. 2022. Rapidly Changing Environment and
Role of Microbiome in Restoring and Creating Sustainable Approaches. Climate Change and Microbial Diversity:
237-278. https://doi.org/10.1201/9781003302810-10.
Wang,
S-W., Hsu, K-H., Huang, S-C., Tseng, S-H., Wang, D-Y. & Cheng, H-F. 2019.
Determination of polycyclic aromatic hydrocarbons (PAHs) in cosmetic products
by gas chromatography-tandem mass spectrometry. Journal of Food and Drug
Analysis 27(3): 815-824. https://doi.org/10.1016/j.jfda.2019.01.003
Watson,
J.G., Tropp, R.J., Kohl, S.D., Wang, X. & Chow, J.C. 2017. Filter processing
and gravimetric analysis for suspended particulate matter samples. Aerosol
Science and Engineering 1(2): 93-105. https://doi.org/10.1007/s41810-017-0010-4
World Health Organization. 2010. WHO Guidelines for
Indoor Air Quality: Selected Pollutants. World Health Organization.
Regional Office for Europe.
Wu, D., Chen, L., Ma, Z., Zhou, D., Fu, L.,
Liu, M., Zhang, T., Yang, J. & Zhen, Q. 2024. Source analysis and health
risk assessment of polycyclic aromatic hydrocarbon (PAHs) in total suspended
particulate matter (TSP) from Bengbu, China. Scientific Reports 14(1):
5080.
Yadav, I.C., Devi, N.L., Li, J. & Zhang, G. 2018.
Altitudinal and spatial variations of polycyclic aromatic hydrocarbons in
Nepal: Implications on source apportionment and risk assessment. Chemosphere 198:
386-396.
Yang,
D., Qi, S., Zhang, Y., Xing, X., Liu, H., Qu, C., Jia, L. & Li, F. 2013.
Levels, sources and potential risks of polycyclic aromatic hydrocarbons (PAHs)
in multimedia environment along the Jinjiang River mainstream to Quanzhou Bay,
China. Marine Pollution Bulletin 76(1-2): 298-306. https://doi.org/10.1016/j.marpolbul.2013.08.016
Yu,
Y., Guo, H., Liu, Y., Huang, K., Wang, Z. & Zhan, X. 2008. Mixed uncertainty
analysis of polycyclic aromatic hydrocarbon inhalation and risk assessment in ambient
air of Beijing. Journal of Environmental Sciences 20(4): 505-512. https://doi.org/10.1016/s1001-0742(08)62087-2
Yunker,
M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D. &
Sylvestre, S. 2002. PAHs in the Fraser River basin: A critical appraisal of PAH
ratios as indicators of PAH source and composition. Organic Geochemistry 33(4): 489-515. https://doi.org/10.1016/s0146-6380(02)00002-5
*Corresponding author; email: jar0101@um.edu.my
|